In this paper, we present CLAID, an open-source cross-platform middleware framework based on transparent computing compatible with Android, iOS, WearOS, Linux, macOS, and Windows. CLAID enables logical integration of devices running different operating systems into an edge-cloud system, facilitating communication and offloading between them, with bindings available in different programming languages. We provide Modules for data collection from various sensors as well as for the deployment of machine-learning models. Furthermore, we propose a novel methodology, ML-Model in the Loop for verifying deployed machine learning models, which helps to analyze problems that may occur during the migration of models from cloud to edge devices. We verify our framework in three different experiments and achieve 100% sampling coverage for data collection across different sensors as well as an equal performance of a cough detection model deployed on both Android and iOS devices. Additionally, we compare the memory and battery consumption of our framework across the two mobile operating systems.
Patrick Langer,
Stephan Altmüller,
Elgar Fleisch,
Filipe Barata